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Abstract. We describe a method for the symmetrisation of basis states of representations 
of semisimple Lie algebras according to semisimple symmetry chains. This method also 
yields the matrix elements for the generators of all algebras of the symmetry chain, and 
thus also for the elements of their enveloping algebras. The symmetry adaptation 
coefficients, and the matrix elements, are obtained in the explicit form m, p ,  q E H .  

The present paper describes the method for the case of su( l+  l ) ,  I being the rank, as 
the leading algebra of the chain, and for completely symmetric representations [ N I  of 
su(I+l ) .  The semisimple symmetry chain with leading algebra su ( I+  1 )  is arbitrary, and 
can be specified according to individual requirements. 

The symmetry adaptation of states and the calculation of matrix elements, as outlined 
in this paper, has been implemented for computer evaluation. As a consequence of the 
method of evaluation all results are obtained in an exact manner. 

1. Introduction 

Semisimple symmetry chains have found frequent and highly successful applications 
in many fields of physics. Familiar examples are the atomic [ l ]  and nuclear [2] shell 
models, both of which had far reaching consequences for a more fundamental under- 
standing of the underlying phenomena. More recent applications of semisimple sym- 
metry chains are found in particle physics [3], the Jahn-Teller effect [4], the interacting 
boson model of the nucleus [5] and in molecular physics [6]. Again, the results 
achieved in these areas by means of the application of symmetry chains have been 
profound, and at times truly astonishing. 

With semisimple symmetry chains playing such an important role in physics, it is 
obvious that one tries to extract all the information which they can supply. A great 
deal has been achieved in this respect. However the calculation of the symmetry- 
adapted states, and the matrix elements for the generators of the subalgebras of a 
symmetry chain still pose problems, in particular if the dimensions of the representa- 
tions become large. 

In this paper we describe a method for the explicit computation of symmetry- 
adapted states according to a semisimple symmetry chain. The method to be described 
is very general and applies to any semisimple symmetry chain which starts out with 
an su( I + 1 )  algebra. 

Apart from its generality, the method to be described permits the explicit calculation 
of the symmetry-adapted states with relative ease. Appropriate linear combinations 
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of states of irreducible representations of su( 1 + 1) are formed which transform properly 
with respect to the subalgebras of su( 1 + 1). This is achieved by making use of Dynkin’s 
theory for the embedding of semisimple Lie algebras in semisimple Lie algebras [7-91, 
and by making use of irreducibility of representations and the orthogonality of basis 
states of the representations. 

The construction of the bases for the irreducible representations of the algebras of 
a symmetry chain resolves the weight subspace degeneracy automatically. A set of 
linear independent, but not orthogonal, vectors is obtained which spans a weight 
subspace. Orthonormalisation of the basis for a weight subspace is carried out in a 
separate step. 

The degeneracy associated with the multiple occurrence of a given representation 
of a subalgebra, contained in the restriction of a representation of an algebra to a 
subalgebra, cannot be resolved naturally. Lacking a physical principle for a preferred 
choice of basis we introduce an orthonormal basis by arbitrary choice. Should a 
physical principle become available for a preferred choice of bases for the multiple 
copies of irreducible representations of the subalgebra, then a simple transformation 
will achieve the change to the desired basis. 

The method for the calculation of the symmetry-adapted states described in this 
article also yields the matrix elements for the generators of all (sub)algebras of a 
symmetry chain, for all representations into which a given su( 1 + 1) representation 
decomposes under restriction to the (sub)algebra. 

In this paper we limit our attention to completely symmetric representations of 
su( 1 + l) ,  characterised by the partition [ N I ,  N E  N, For these representations the 
matrix elements are of a particularly simple form, and have a simple closed form for 
the symmetrised basis which we use in our analysis. The case of an arbitrary (irreduc- 
ible) representation of su( 1 + l ) ,  characterised by a partition, A I ,  A* ,  . . . , A r t l ,  will be 
discussed in a subsequent paper. The method described in this paper works for the 
general case of a representation of su( l+ 1) in the same manner, except that for the 
general case the su( 1 + 1) matrix elements will be determined numerically. 

In 0 2 we define the notation used in this paper and establish the correspondence 
to other notations which are commonly encountered in the literature. We also define 
the symmetry-adapted states, foilowing a sequence of maximally embedded algebras, 
in a general manner. The notation introduced here for the symmetry-adapted states 
will later be specialised to particular situations, and will be used in simplified form 
wherever this is possible without causing confusion. 

In 0 3 we present our method for the symmetry adaptation of states according to 
a given symmetry chain, as well as the determination of the matrix elements for the 
generators of all algebras of the chain, in all representations which occur. 

In 00 4 and 5 we apply our method to the familiar case of the su(6) interacting 
boson model of the nucleus ( I B M )  for the purpose of illustration. In 0 4 we give the 
necessary definitions for the embeddings used for the three su(6) IBM symmetry chains. 
Moreover we illustrate the similarity transformation which relates the three chains. In 
0 5 we discuss the two-boson case of the su(6) I B M  as an explicit example. 

2. Definitions and notation 

In the first part of this section we establish the notation used in this article. Then we 
briefly list various other notations used for certain groups and explain how they relate 
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to our notation. In the second part of this section we define the symmetry-adapted 
states according to a symmetry chain. 

Throughout the article we will use weight notation, except for the case of the 
algebra s u ( l + l ) ,  as the leading algebra (model algebra) of a symmetry chain. For 
that case we use the partition notation. Since the partition notation is essentially the 
same as the weight notation we will frequently refer to a partition as a weight. For 
su( I + 1) we use the notation: 

k 
weight: m = ( m , ,  m,,  . . . , m l + , )  m. = - 

' z+1 

dominant weight: 

highest (dominant) weight: 

m,  2 m2 2 - - -  2 ml+,  

M = (MI,  M , ,  . . . , M I + , )  
MI L Mz 2 - - -  L MI+, 

partition: [ n ]  = [ n ,  , n 2 ,  . . . , n l + , ]  

n l E N  n i =  NEN 
i = l  

dominant partition: 

highest (dominant) partition: 

n ,  2 n2 2. . .2 nl+,  

[ A ]  = [ A , ,  A 2 , .  . . , A I ,  A,+, = 01 
I 

A,€N Ai=N.  
i = l  

We have the relationships 

mi = ni - N / ( I +  1) 

A . = m , - m  I I 1 + 1  i = 1 , 2  , . . . ,  Z+1. 

i =  1 , 2 , .  . . , 1 + 1  

For su(3) the following notations are frequently found in the literature: 

(a) 
(b) m = ( m l ,  m 2 9  m 3 )  m ,  + m, + m3 = 0 mi = $ k  k E Z  

(c) M = p f ( 2 ,  -1, -1)+qf( l ,  1, -2) P ,  4 E N  

[ A , ,  A 2 ,  01 = [ A ,  PI 

A = m l - m 3  

p = m 2 - m 3  

-1 
1 - 3(2P + 4 )  

p = m , - m 2  

q = m 2 - m 3  

For su(2) - so(3) the notation employed is 

j = f A ,  A,EN 

m = m  I - &  -1 k E Z  m ,  + m2 = 0. 
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For so(2I-t 1) we use the weight notation, 

m =(m1,  m2,. * * ,  m / )  m. I 2  =‘k k E Z .  

The irreducible representations are characterised by weights satisfying 

m, 3 m 2 3 . .  .a m, 3 0 (dominant weight condition). 

For so(21) we use the weight notation, 

m = ( m , ,  m 2 , .  . . m,)  m.  I 2  =‘k k E Z .  

The irreducible representations are characterised by weights satisfying 

m, 3 m2 3 . . . z Imll. 

The algebra so(4) - so(3) x so(3) is semisimple. We use the notation 

so(4): m = ( m , ,  m,) m. 1 2  =ik k E Z .  

For highest weights 

m I 3  Im2l 
-I ; - 2(m1+ m2). -1 su(2) x su(2): 1 - 2 ( % -  m2) 

For sp(2I) we use the weight notation 

m = [ m , ,  m2, * * . , m1l mi E Z. 

The highest weights satisfy the dominant weight condition 

m ,  3 m2 3. . .3 m, 5 0. 

We call a weight m (partition [ n ] )  larger than a weight m‘ (partition [n ’ ] )  if for the 
first non-vanishing difference of components it holds that mk - m i  > 0 (nk - n ;  > 0). 

In the following we define a symmetry-adapted state, according to a given symmetry 
chain. Consider a symmetry chain consisting of a sequence of algebras 

G 2 63. .  .I> G’2 G“ (2.1) 

with the property that each subalgebra is a maximal subalgebra of the preceding algebra 
[8,9]. A subalgebra 6 of an algebra G is called a maximal subalgebra if there exists 
no algebra G, such that G r > G , = 6 .  The algebra G of the symmetry chain (2.1) is a 
consequence of the assumptions made for the model, and we will call G the ‘model 
algebra’. The last algebra of a symmetry chain usually represents symmetry operations 
with respect to which the physical model is invariant. We therefore will refer to it as 
the ‘invariance algebra’. 

In this article we assume the model algebra to be of the type Ai - su(l+ l),  I being 
the rank, or to be a direct sum of such algebras. 

We will use the following notation. 

(i) G (model algebra su( l+ 1) of rank I ) :  

weight: m = (m,  m2 , .  . . , m/+,)  
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highest weight of irreducible representation, highest weight of the set of 
dominant weights of an irreducible representation: M = 

irreducible representation of G corresponding to the highest weight 
M :  D ( M )  

basis state for irreducible representation D( M )  which belongs to the 
weight subspace V,, the label a characterising the weight space 

As mentioned before we will use the closely related partition notation interchangeably 
with the weight notation for the su(l+ 1) algebras. 

(ii) G’ (a subalgebra of G, not necessarily a maximal subalgebra of G): 

( M I ,  M2, * .  ., M+I) 

degeneracy: I M ;  ma). (2.2) 

weight: m’= ( m i ,  mi , .  . . , mi.) 1’s 1. 

highest (dominant) weight of an irreducible representation: M’= ( M i ,  
M; ,  . . . , Mi.)  

irreducible representation of G’ corresponding to highest weight 
M’: D ( M ’ )  

basis sate of irreducible representation D( M’)  of G’ belonging to weight 
subspace Vm.:  IM, G;,. . . , M’T’; m’a’). (2.3) 

The abel a‘ in (2.3) characterises the weight space degeneracy. The state (2 ,3 )  consists 
of a linear combination of states / M ;  ma)  of D ( M )  of G and has been symmetry 
adapted along the chain G 3 6 2 .  . . =  G’. That is, the state transforms according to 
the representation D ( M )  of G, D ( f i ) ;  of 6,.  . . , D(M’)T’  of G’, and belongs to the 
weight “a’ of D( M ’ )  7’. The labels ;, . . . , r’ distinguish identical copies of irreducible 
representations D G ) ,  . . . , D( M’) .  The label a distinguishes basis states of the weight 
subspace V,, of D ( M ’ ) .  We have 

= 1 d’(M,  A&, . . . , M’r’; m‘cr’lma)lM; ma) d ’ ( .  . . ) € e  
m v s D ( M )  
.f ( m  )= m’ 

(2.4) 

where the sum is over states ma of the representation D ( M )  of G. In fact, the sum 
is only over those states ma of D ( M )  for which the weight m is projected upon the 
weight m‘ by the embedding matrix f of G’ in G, f ( m )  = m‘. 
(iii) GI’ (G” maximal in GI). Following (ii) above we have 

I M, G;, . . . , M‘T‘, M ~ ~ T ~ ~ ;  rn”art) 

= 1 d‘‘( M,  fi?, . . . , M‘T‘, M‘‘T“; m”a“lma) 
m v e  D ( M )  
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where g is the embedding matrix of G” in G‘. The first equality sign expresses the 
state in terms of states of the model algebra G. The second equality sign expresses 
the same state as a sum over states which have already been symmetry adapted along 
the chain G 2 6 2 .  . .I G’. Substitution of (2.4) carries this expression over into the 
first one, and yields relationships for the symmetry-adaptation coefficients. 

3. Symmetry adaptation and matrix elements 

Given a symmetry chain G 2 6 2 .  . . G’, the model algebra G is, by assumption, of 
the type su( I +  1). All subalgebras 6,. . . , G‘ of the symmetry chain are embedded in 
su( I +  1). Thus the generators of all algebras G, 6, . . . , G’ will act upon su( 1 + 1) states, 
and we need to study only the action of the su( 1 + 1) generators upon the su( 1 + 1) states. 

Let [ A ]  = [ N ,  0,. . . , 01 denote a partition which labels a completely symmetrical 
s u ( l + l )  representation. Let [ n ] = [ n , , n ,  , . . . ,  n , , , ] ,  E::: n ,=N,  n , e N ,  i =  
1,2, . . . , 1 + 1, denote an arbitrary partition of the irreducible representation [ N I .  
Moreover, let 

KNI, [ n l )  (3.1) 

denote a state of the representation [NI  labelled by [ n ] .  We assume that this state is 
normalised to 1. Then we have for the action of the shift operator E,, (Y being a root 
of su( 1 + l ) ,  

Ee,-e,l[Nl, * * * 9 nr, * . 9 nj, . . > n1+1I) 

= m J ; ; j j [ ~ ] , [ n  ,,..., n,+1,  ..., n,- l ,  ..., nfT1]). (3.2) 

Note that the matrix elements are those of a product of a boson creation and a boson 
annihilation operator. 

In what follows it will be seen that for each given algebra of the symmetry chain 
we will only need to consider the action of the generators which correspond to the 
simple negative roots of that algebra. However, the embedding of these generators in 
su( 1 + 1) will, in general, also involve shift operators of su( I + 1) other than those which 
correspond to the simple negative roots. 

Given a subalgebra G’ of the symmetry chain, its shift operators will act upon the 
symmetrised, and normalised, states of an su( I + 1) representation via their embedding 
in su( 1 + 1). In general it will require linear combinations of the symmetrised and 
normalised states of su( I +  1) to transform properly with respect to the subalgebra G’ 
of su(l+ 1). We assume that we are given such a linear combination of su(I+ 1) states 
which transforms according to a certain state of an irreducible representation of G’, 
and that this state is normalised to 1. Acting upon this state with a shift operator of 
G’, embedded in su( 1 + l ) ,  we obtain another state of the same representation G’, unless 
the state is mapped to zero. The resultant state is in general no longer normalised to 
1. Normalising the new state to 1 we obtain the matrix element for the action of the 
shift operator between the two normalised states. Thus, we not only have the matrix 
elements of the generators of su( 1 + 1) in the representation [ N I ,  but obtain the matrix 
elements of all generators of all subalgebras of the symmetry chain as well, for all 
irreducible representations of the subalgebras into which the representation [NI  of 
su( 1 + 1) branches. 
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For a given algebra the action of the shift operators E-e,  which correspond to the 
simple negative roots -a, is sufficient to generate all states of an irreducible representa- 
tion if they act upon the state which corresponds to the highest weight of the representa- 
tion (i.e. E,IM) = 0 for all positive simple roots a ) .  Thus the multiplicity associated 
with the weight space degeneracy U poses no problem and is solved automatically. 
The basis vectors for a given weight subspace will not, however, be orthonormal and 
need to be orthonormalised separately. 

The multiplicity associated with the branching of a representation of a group under 
restriction to one of its subgroups has no natural solution if the multiplicity becomes 
2 2 .  Unless a physical principle is given for a particular choice of a basis for the 
multiple copies of representations of a subalgebra there is no criteria available for the 
choice of one basis over another. Thus, we arbitrarily introduce an orthonormal basis 
for multiple copies of identical representations. 

the root system of an algebra and by 7 ~ +  the set 
of positive and negative simple roots of an algebra. By U ( D ( M ‘ ) ,  m’) we denote the 
dimension of the weight subspace of a weight m‘E D ( M ’ )  of G’. By T ( M ,  M ’ )  we 
denote the number of (identical) irreducible representations D ( M ’ )  of G’ which are 
obtained from a representation D ( M )  of G under restriction of G to its subalgebra 
G’. By S ( M ,  m’) we denote the total number of weights m E D ( M )  which are projected 
onto a given weight m’ of G’ under the restriction of G to G’. 

In the following we give a stepwise procedure for the determination of symmetry- 
adapted states, following a chain of maximally embedded subalgebras. 

( 1 )  G(su( 1 + 1 ) )  =I G’, maximally. Choose the desired su( I + 1 )  representation 
D ( [ N ] ) .  The vector of highest weight of D ( [ N ] )  is / [ N I ;  [ N ,  0, .  . . , O ] ) .  This vector 
is unique. The shift operators E - m ,  -a E 7 ~ - ,  acting upon this vector generate all basis 
states of the representation D ( [ N ] ) .  

( 2 )  Let f ( E & . )  E G denote the shift operators E&, ,  L Y ‘ E  T + ,  of G’, embedded in the 
algebra G. Let M i , )  denote the highest weight of G’ which occurs in the projection 
f ( [ n ] )  of the weights [ n ] ~  D ( [ N ] )  onto the weight space of G’, let n ( [ N ] ,  Mil)) 
denote its multiplicity, and let S ( [ N ] ,  A f t l ) )  = { / [ N I ;  [ n ] ) ,  f ( [ n ] )  = M[ll} denote the 
set of states of D ( [ N ] )  for which f ( [ n ] )  = Mil). The state(s) satisfying 

In the following we denote by 

generate the basis states for the irreducible representation(s) D(M[ll) of G’. We call 
these vectors extremal vectors [ 101. In the case where more than one extremal vector 
is obtained we have a non-trivial branching multiplicity, i.e. T ( [ N ] ,  M[ll)  = S >  1 .  In 
that case we have to introduce an additional label T to distinguish otherwise identical 
copies D ( M [ l ) ) .  The extremal vectors I [ N ] ,  M [ , , T ;  Mil)), T = 1 , 2 , 3 , .  . . , S, define an 
S-dimensional subspace since U = 1 for any extremal vector. In this S-dimensional 
space we can choose an orthonormal basis at will, and each basis vector will define 
an identical representation D ( M [ l ) ) .  That is, acting with thef(EL,,), -a’€  n-, upon 
each of these orthonormal vectors yields a basis for a copy D(Mi1)). The weight space 
multiplicity u(Mil1, m’) is resolved automatically (within each of the S copies 
D(M[ll)), with the basis elements for the weight subspaces consisting of linear indepen- 
dent, but non-orthogonal, vectors (note, we use f ( E l a , )  with simple negative roots 
only). Basis vectors which belong to different weight subspace are automatically 
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orthogonal, while those which belong to the same weight of a given irreducible 
representation need to be orthonormalised in a separate step. 

In general, the action of an operator f ( E l a )  upon an orthonormalised state I [N] ,  
M[l); m’) will result in a state which is no longer normalised to 1. Normalising the 
state obtained to 1, we obtain a normalised state l [ N ] ,  M[il ;  “-a’)  multiplied by 
the matrix element for the generator E of G’ connecting these two states of D( M[l)). 

(3) The next highest dominant weight is located in the sequence M{,l 2 M{21 2 
. . . of projected dominant weights. We have 

W N I ,  Mh) - ~ [ l ) ) d m M ; i I ,  M [ * ) )  = k 3 0. 

If k = 0, then there exists no representation D( M[, ) )  in the restriction of D ( [  N I )  to 
G’. If k >  0, then there exist k copies of D(M[ , , )  in the restriction of D ( [ N ] )  to G’. 
The associated extremal vectors 

C [ n j E  r = 1 , 2 , .  , , , k 

generate the representations D(M[ , ,  7) in accordance with ( 2 ) .  
The subspace spanned by the k extremal vectors is orthogonal to the weight 

subspace(s) of the weight M12) in the representation(s) D( M [ i ) ) .  This subspace can 
thus be determined by orthogonalisation. It is the subspace of the space spanned by 
S([N], M[21) which is orthogonal to the weight subspaces corresponding to the weights 
M[,)  in the representation(s) D(M[il). For k = 1 the orthogonalisation determines the 
(single) extremal vector uniquely, apart from its normalisation. If k >  1 then the 
subspace is uniquely determined, for which an arbitrary orthonormal basis can be 
defined. Acting with thef(El , ) ,  -a‘€  R ,  upon the basis vector(s) (extremal vectors), 
a copy of D(M[, , )  is generated. 

(4) Assuming that, in sequence, the irreducible representations corresponding to 
highest weights 2 M t 2 )  2. . . , M [ 4 - 1 )  have been determined, 

D(M[i), 711) D(M{ , ) ,  4 . . .  m M [ q - i ) ,  7;-1) 

we proceed to deterhine the representations associated with the next-highest weight 
M [ 4 ) .  We have 

S ( [ N ] ,  M[ql)  - ki T([NI, M[t))g(M[il, M [ q ) )  = k 2 0. 
i = l  

If k = 0 ,  there is no representation D(Mlq1) in the restriction of D ( [ N ] )  to G’. If 
k 2  1, then there are k copies of D(M[, , )  in the restriction of D([N]) to G‘. We find 
the subspace orthogonal to all weight subspaces M [ q )  in the representations D ( M [ i ) ) ,  
i = 1,2,  . . . , q - 1. If k = 1, then orthogonalisation determines the extremal vector 
(uniquely, apart from normalisation), 
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which is orthogonal to the direct sum of all weight subspaces corresponding to the 
weight M i q )  in all representations D ( M [ i l ) ,  i = 1,2, . . . , q - 1, is uniquely determined. 
The basis vectors of these weight subspaces are known, since they have already been 
found. The direct sum of the weight subspaces forms a subspace V of the space 
spanned by S([N], M i q l ) .  The orthogonal complement of V in the space S([N],  M [ q ) )  
is the subspace we are looking for. An orthonormal basis is introduced into this 
subspace in an arbitrary manner. Each basis vector is an extrema1 vector J[N], Miq)7’; 
M [ q ) ) ,  7’’ 1, 2, .  . . , k. for each value T’= 1, 2 , .  . . , k the action of the shift operators 
f(EL,.), --CY’€ 7 ~ - ,  generates a copy of D ( M [ q l ) .  

( 5 )  Having found all representations D( M ’ )  contained in the representation D( M )  
under the restriction of G(su( 1 + 1))  to G’, one proceeds to the next (maximal) subgroup 
G”, G 3 G ‘ 3  G”. All steps repeat themselves, with G” replacing G‘ in G, except that 
the orthogonalisation proceedure has to be carried out in G’ (and not in G). Only then 
is the orthogonalisation procedure unique-apart from the arbitrariness for the choice 
of basis for multiple copies of identical representations D ( M ” )  of G” which occur in 
the restriction of a representation D ( M ’ )  of G’ to the subalgebra G”. In other words, 
while the basis states for the representations D ( M ” )  are calculated in the form of (2.5), 
the orthogonalisation procedure needs io be carried out with the basis states of D( M”)  
expressed in the form of (2.6). 

4. Example: su(6) IBM 

The su(6) IBM has three symmetry chains which lead from the model algebra su(6) to 
its physical subalgebra so(3) - su(2) (locally) [5,9]. They are: su(6) + su(5) + so(5) + 
so(3), su(6) + so(6) - su(4) + so(5) + so(3) and 4 6 )  + su(3) + so(3). Boson creation 
and annihilation operators s+, s and d f , ,  d,, m = 2,1,0, -1, -2, are introduced, for 
angular momentum 1 = O  and 1=2  respectively. They satisfy the usual Lie products. 
From them the Lie algebra su(6) is built and the subalgebra chains are identified. 

We need to introduce at this point a few concepts [8,9]. An embedding of a 
(semisimple) Lie algebra G’ in a (semisimple) Lie algebra G is a linear map f of G’ 
into G, 

f : X i +  f(X;) E G V X ;  E G’ (4.1) 

The X i  denote basis elements of G’, the c‘ are the structure constants of G’, and the 
Lie product (4.2) is in G. The embedding has the property that 

The H: denote basis elements of the Cartan subalgebra of G’, the H, basis elements 
of the Cartan subalgebra of G. The rank of G’ is l’, the rank of G is 1. The embedding 
of the raising operators EL, E G’, a’> 0, in G is given as 

f(EL) = c G a E , ,  E,  E G c,,, E c 

f(El,.) = f(E&.)+. 

,Er,. 

and the lowering operators E!.,,€ G’ are given as 

(4.4) 

(4.5) 
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The set ref of roots of G is defined as the subset of roots of the root system Z of G, 

r,. = E cif(.) = a / >  (4.6) 

with 

In general, the embedding matrix acts as a projection operator from the weight space 
of G into the weight space of G'. 

/+ 1 

[ f ( m ) l i  = Ajmj = mi. 
j=l 

(4.8) 

We are now ready to discuss the su(6) I B M  symmetry chains in the language of 
embeddings. The examples given below will illustrate the meaning of the concepts 
given above. 

su(6) + su(5): the generators of su(5) are embedded in su(6) as: 
(A) The chain su(6) + su(5) + so(5) + so(3): 

f (Eb , - e , )  = Ee6-e l  

f (E6,-e3)  = E,,-,, 

f ( H ; )  = HI f ( H ; )  = H6 A H ; )  = H3 

f ( H & )  = H2 f ( H 9  = H5. 

f (Eb3-e2 )  = E,,--,, 

f(Eb,-e,) = E,,-,, 

The ei - ej ,  i # j ,  denote the roots of G' and G. 
su(6)+ su(5) + so(5): the generators of so(5) are embedded in su(6) as: 

(4.9) 

f(Eb2-el) = Ee2-el+Ee6-e5 

f ( H ! )  = H I  - H6 

f ( E ' e 2 )  = Ee,-e,+ Ee3-ez 
(4.10) 

f ( H ; ) = H , - H , .  

su(6) + su(5) + so(5) + so(3): the generators of so(3) are embedded in su(6) as: 

(4.11) 

The correspondence of the notation used above to the boson operator description is 
the following. Let [n], Zp=l ni = N, denote a partition (weight) of the representation 
[NI  of su(6). Then we have 

(d:)"l (d:)"2 (d,')"3 (s+)"4 (d; , )"s  
[ n , ,  n 2 , .  . . , n6]=- --- - 

All boson creation operators commute and thus 
relevance. 

Introducing boson operators b f ,  bi such that 

b: = d :  b i = d :  b: = d,' b l  = s+ 

""dq 

we obtain 

E e , - e n  = b:bi H ,  = b t b , .  

(dT2)"6 
" (4.12) 

the particular ordering is of no 

b: = d : ,  b l =  d : ,  
(4.13) 

(4.14) 
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The angular momentum algebra embedded through chain (4.1 1) takes on the form 

(4.15) 

(4.16) 

Comparing (4.17) and (4.11) it might appear that we are dealing with two distinct 
embeddings of so(3) in su(6). This is not the case. The two embeddings are mathemati- 
cally equivalent and go over into each other under a suitable change of basis of the 
defining representation [l] of su(6). For the case of chain (A) we have defined a basis 
for the representation [ l ]  of su(6): 

d~=[100000]=/[1] , [1] ,  (1,0),2;2) 

d :  = [OlOOOO] = I[ 11, [ 11, (1, 0), 2; 1) 

d,' = [OOIOOO] = I[ 13, [ 13, (1,0), 2; 0) 

d~~=[000010]=1[1 ] ,  [ l ] ,  (1 ,0) ,2;  -1) 

dT,=[000001]=1[1], [ l ] ,  (1 ,0) ,2;  -2) 

S+ = [000100] = 1[1], [O], (0, O ) ,  0; 0). 

(4.18) 

(4.19) 
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Thus we have introduced new bosons, symmetry adapted according to chain (B), 

d;'= d: d ; + = d :  dAT = J$d; +,/is+ 
- - 

dk: = d' ,  dL> = d', Sl+=J!dt-J$s+. 3 0  

Ordering the primed and unprimed bosons in the sequence d:, d: ,  d i ,  s+, d : l ,  d', 
the similarity transformation 

1 1  0 0 0 0 o \  

0 1  O i  
0 0 0  0 
0 0 0  0 

carries the unprimed bosons into the primed bosons, and vice versa ( M - '  = M ) .  The 
similarity transformation 

f( L)  = M - ' f (  L-)'M (4.20) 

carries the generators f( L)' over into the form f( L). 
The embedding (4.11) corresponds to orbital angular momentum. In order to have 

chain (B) also represent orbital angular momentum we must perform the similarity 
transformation (4.20). The original (mathematically equivalent) embeddings (4.11) 
and (4.17) have the property that the Cartan subalgebra H of su(6) remains the same 
for both embeddings. The similarity transformation M induces in su(6) a different 
choice for the Cartan subalgebra H for the two embeddings. 

su(6) + su(4): the generators of su(4) in su(6) are: 
(C) The chain su(6) + su(4) - so(6) + so(5) + so(3). 

f ( E b , - e , )  = E,,-,,+ E,,-,, f(Ele3-e2) = E,,-,, + E,,-,, 

su(6) + su(4) + so(5) + so(3): the generators of so(3) in su(6) are: 

(4.21) 

(4.22) 
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The change of basis of the representation [ l ]  of su(6) which brings f ( L ) "  into the 
form f ( L )  is given by the matrix M "  

0 0 0  O O O I  l o  1 0 
1 0 0 

(4.24) 

0 0 1  O O I  
0 0  0 
0 0  0 

The symmetry-adapted bosons for this chain are thus expressed in terms of the bosons 
of chain (A) as 

d i t  = d i  d f +  = d:  d,"+ = &,+ +&,' 
s l I+  = - , / id+ +Jis+ d!!: = d l ,  d!; = d', 2 0  

5. Example: the representation [2] 

In this section we choose'the representation [2] of su(6) as an example. We will 
discuss the two boson states which transform at the so(3) level like 
1 = 4, m = 1, 0. The states will be given in the notation which we use for the purpose 
of computer evaluation, as well as in the boson operator notation. The action of shift 
operators upon these states will be illustrated. Finally we will show the equivalence 
of the three states Z=4, m = O  which are obtained through symmetry adaptation 
according to the three symmetry chains. 

The symmetry adapted state for 1 = 4, m = 1, is obtained as 

1[2], [2], (2 ,0) ,4;  1)=J$[011000]+Jf[100010]= J?jd:d:+J$d:d"_, 

The operatorf(L)  acts upon this state, in the form (4.11) with (3.2) or in the form (4.15), 

(A) Chain su(6) + 4 5 )  + so(5) + so(3). 

f(L-)l[21, [21, (2, O ) ,  4; 1) 

= h 6 ( 4 ~ 2 [ 0 1 0 0 1 0 ]  +Jg[ 1000011 + 6J&[002000]) 

= JG( 4 J$ d T d T + &d; d ?z + 6 4 4  d O+)'/dT!) 

= J 3 2 1 ,  P I ,  (2, O ) ,  4; 0). 

The JG is the matrix element of f ( L )  between the two states. 

The symmetry-adapted state for 1 = 4, m = 1, is obtained as 
(B) Chain su(6) -$ su(3) + so(3). 

P I ,  (0,4), 4; 1) 

= Jf[010100] +Jf[ 100010] + 2 4 0 1  10001 

= J $ d  Ts+ + J $ d  i d  T + 2 4 d  T d 0'. 
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The opera tor f (L)‘  acts upon this state in its form (4.17), or in the transcribed boson 
operator form, 

f (L - ) ’ lP I ,  (0,413 4; 1) 

= J Z ( ~ J ~ [ O O ~ O O O I  + ~ J ~ [ o o o ~ o o ]  + 4J$[0011001+ 4J$[010010] 

+ 4% iooooi  1) 

In obtaining this result we have used the same basis states, i.e. the same bosons, as 
for chain (A).  If instead we introduce a new basis, i.e. primed bosons, defined by 
symmetry adaptation of the old basis according to chain (B) equation (4.19), then 
simple substitution yields 

/[21, (0,4), 4; 0) 
= 4&[ 01 901 01’ + Jg[ 1 OOOOI]~ + 6J~[002000] ’  

= 4 4 d  {+ d L: + G d  ;+ d L> + 6 & 4 (  d %)’, 

(C) Chain su(6) + 4 4 )  - so(6) + so(5) -f so(3). 
The symmetry adapted state for 1 = 4, m = 1 is obtained as 

IPI, (11-1-1L (2,019 4; 1) 
=J~[OIO~OOI +Jf[0110001+ J~[IOOOIOI 
= Jfd:s’+J~d:d,’+J~d:d’,. 

The opera tor f (L)”  acts upon this state in its form (4.23), or in the transcribed boson 
operator form, 

f(L-)”1[21, (11-1-1), (2,0), 4; 1) 
= J ~ G { ~ J ~ [ o o ~ o o o I  + 3J~[000200]  + 3J~[0011001 

= J10(3&J$( d:)’ + 3&$(s+)’ + 3JZdis+ +4JZdTdf ,  +&$dld?, 

+ 4Jg[  010010] + J&[ 10000 11 

= Jlol[2], (1  1-1-1), (2, O ) ,  4; 0). 

These states are given in the basis which is symmetry adapted through chain (A),  
represented by unprimed states and boson operators. Introducing a new basis, i.e. 
new boson operators, symmetry adapted through chain (C), and defined by (4.24), 
then simple substitution yields 

IPI, (11-1-1), (2,0), 4; 0) - 
= 4J$[ 01 001 O]”+ &[ 100001 1” + 6 4 [  0020001” 

= 4 4 d  yi d !: + J&d ;+d !: + 6JJ:( d;ji)*. 

6. Final remarks 

The method for the calculation for the symmetry adaptation of wavefunctions described 
in this article is valid for any semisimple symmetry chain. It is based upon integer 
calculus, and thus the results are exact. 
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Three problems, often considered as separate problems, are treated in a unified 

(a) the construction of bases for the irreducible representations of semisimple Lie 

(b) the construction of bases for irreducible representations D ( M ’ )  for any semi- 

(c) the direct product of representations of a semisimple Lie algebra L. 
Thus, our definition of symmetry adaptations coefficients is very general and implies: 
(i)  the coefficients for the linear combinations of the originally chosen basis states 

which need to be formed in order that the algebra takes on its standard form (diagonal 
Cartan subalgebra raising and lowering operators); 

(ii) the coefficients of the linear combinations of basis states IM, m )  of the algebra 
L, which need to be formed in order to obtain the appropriate basis D ( M ’ ) ,  for any 
of its semisimple Lie subalgebras L’; 

(iii) the familiar Clebsch-Gordan coefficients. With (i), (ii) and (iii) are associated 
multiplicity problems, namely; for (i), the ‘inner multiplicity’, i.e. the dimension of 
the weight subspaces of an (irreducible) representation space; for (ii), the ‘branching 
multiplicity’, i.e. the multiple occurrence of identical representations of a subalgebra 
L‘ of L under restriction of L to L’; and for (iii) the ‘outer multiplicity’, i.e. the multiple 
occurrence of identical representations in the reduction of the direct product of 
representations. 

These multiplicity problems are automatically resolved by our method. However 
for (ii) and (iii) we make an arbitrary choice of basis for multiplicities 3 2, due to the 
lack of a physical principle for a preferred choice of basis. Any other desired choice 
of basis is then obtained as a linear combination over the bases which we obtain for 
identical representations. 

The symmetry adaptation of states and the calculation of matrix elements, as 
outlined in this article, has been implemented for computer evaluation. A computer 
code for symmetry adaptation coefficients has been worked out by two of the authors 
[ll-131; as an example a systematic and complete tabulation has been obtained for 
all semisimple symmetry chains of 4 4 )  - s0(6), for all irreducible representations of 
su(4) up to, and including, four particles (Le. [ N , ,  N 2 ,  N , ,  N4], N=X.:‘=, N,,  N, S 4). 
The representation [3, 1,1, 11 is also included as an example for a larger value of N. 
Direct products will be discussed in volumes 3 and 4 of [13]. 

manner, namely: 

algebras L; 

simple Lie algebra L’ of L in terms of the basis D ( M )  of the Lie algebra L; 
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